EFFECT OF STRUCTURE OF COMPOSITE MATERIALS
ON THEIR ELASTIC PROPERTIES

V. V. Dudukalenko, O. I, Ivanishcheva, UDC 539.4
and B, I, Legenya

A statistical formulation is proposed for determining the bounds of elastic macrocharacter-
istics of a composite material by using classical variational theorems of the elasticity the-
ory. The calculation scheme provided takes into account the correlation effects of the sec-
ond and third order; it also provides estimates for elastic macrocharacteristics by taking
into account the constant, the latter being that physical characteristic of the material which
reflects its structure.

1. A microinhomogeneous elastic body is considered with an elastic moduli tensor given by
Mijer = v0idp + B (8uxbsi + 81185 — ¥/ 38104)

The bulk and the shear moduli y and y are considered to be homogeneous and isotropic ergodic func-
tions of the spatial coordinates. The stress—strain state of the medium under consideration can be de-
scribed by the Hooke's law which relates the stresses oj; and strains ¢;j by means of

O == ('V - 2/3”) Eh-;féij —|[~ 2},!,81-"7‘ (1-1)
together with the equilibrium equations and the Cauchy relations,
ey = (i, i +uy, ) (1.3)

In the above and in our further considerations it is assumed that the stress—strain state is macro-
homogeneous, that is,

{oi;> = const, <{e;;> == const (1.4)

The angular brackets denote the mathematical expectation; the dashes refer to deviations of functions
from their mathematical expectations,

If the stress and strain tensors are represented in their spherical-cum-deviatory form, the relation
{1.1) assumes the form

o = 3ye (1.5)
Sij = 2pe;; (1.6)
(6=0y, E=¢,, S;;=0;; /558, €;; = &5~ *3ed,;) .

Our problem consists in determining the bounds v* and pu* of the elastic macrocharacteristics which
can be introduced by the relations

KK’

<o) = 3y*(ed, <(Siyd> = 2p* <epd ' 1.7

Let the displacements u;” be given on the surface S which bounds the volume V in such a way that the
relation

ud = <& ’ (1.8)

is valid for their mean values on S.
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Then when (1.7) is used, the elastic potential of the volume V is given by [1]
2E = (y*e)® + 2p* (e <)) V (1.9)

In accordance with the principle of least potential energy [2] for aﬁy virtual-strain field which satis~
fies (1.7) the following inequality is valid:

2E 1
' =< 7& (ve® + 2peszes;) AV .

v

(1.10)

If it is assumed that the scale of heterogeneities is small compared with the macrovolume, then since
the homogeneous random fields are ergodic, the integration over the volume V corresponds to the process
of averaging. Together with (1.10) one also obtains

P*Ced? + 2p*Ceisd Ceisd <CpdKe? -+ 2¢eXy'e’D (1.11)
+ pXee’> + (yEe’y + 2K pdeidesd + e e’y + (uxef &5
+p'eiiei Dl : .
The virtual-strain field Sij' is introduced with the aid of the relations
o =7yc+¢ed (1.12)
Sy = pa;; + ;b (1.13)

where ay;, b, ¢, d are nonrandom quantities to be determined. In solving the system of equations (1.2), (1.3),
(1.12), and (1.13) the Fourier-transform method can be employed; thus the fluctuations ¢;;' are determined.
With the aid of the latter the correlation moments appearing in(1.11) can now be determined; this inequality
provides the upper bounds for the elastic characteristics. To obtain a lower-bound estimate for the bulk
and shear moduli, the problem must be solved in stresses by having a system of loads on the entire sur-
face S bending the volume V which would ensure a homogeneous stressed state,

Py = <o 1y (1.14)
In this case the principle of least potential energy for a statically feasible stress field Uij' results in
the inequality [2]

(9 T 0 (81> gz (Sid > - (<) (0¥ + 20 (W) + (5 (679"

+ (') + M [V <S3d (8> + 2<{8ud (V'Si')

+ VSS + (VSSiD), =17, v=pTt (1.15)
The statically feasible stress field is introduced by means of the relations
¢ = e+ &% (1.16)

e =vai + 8i0° (1.17)
which contain the nonrandom quantities aijo, b, ¢°, d°, -

Moreover, one should use Fourier transforms together with (1.16) and (1.17) to solve the compati~
bility equation which, if (1.4) holds, is

Pom’ ¢ (1.18)
Cimpfini Bz, 02, =

In the above ejjk is a Levi—Civita tensor. Subsequently, the correlation moments which appear in
the inequality (1.15) can be computed; this provides lower bounds for y * and p*, that is, the determination
of the bounds for macrocharacteristics has been obtained.

It is noted that in view of isotropy of general properties of the elastic medium under consideration,
it is required that only two elastic constants be determined, y* and p*. There is no need, therefore, to
introduce a completely arbitrary general deformation. It is sufficient to consider deformation of only two
independent types.

2. To determine the bounds of the shear modulus, the uniform state is considered of the elastic com-
position in which the phase regions are right continuous cylinders with parallel generating lines and of
arbitrary cross section. It is assumed that the composition is macroscopically homogeneous and trans-
versely isotropic. The coordinate system is selected such that the x, axis is identical with the generators
of the cylinders and with the direction of the shear,
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The elastic displacements corresponding to this problem are as follows:

u, = uy (z), Usg=1Uu3=0 (=23 2.1
and the stress—strain state in the directions x,, x; does not depend on x;. In our coordinate system the
relation (1.13) becomes

Sy’ = pay +en'd (2.2)
and, moreover, '
Oy = Opp = Og3 == O3 = 0 (2.3)
The solution of the system of equations (1.2), (1.3), (2.1), and (2.2) by using Fourier transforms is of
the form
+2 6,

o) .
ey = S — g8 L €nrndn G =a, /b ol=00,1=2 3 (2.4)

——00

where w; are parameters of the two-variables Fourier transformation, and g is a function of the wj vari-
ables which gives the spectral distribution, namely,
W i x
w = { ge*™mdo (2.5)

Since the random function y' is isotropic therefore [3]

(g (@) g (7)) = A (078 (9; + ;)
g (03) g (0)) g (0")) = F (&%, 05, 0/, 0%) 8 (0; + @ + ) (2.6)

where A and F are three-dimensional spectral densities of the functionp',and 0 is the Dirac's delta func-
tion. From (2.4) and (2.5) [4] one obtains by using (2.6}

w'ey’y = — Yo Dulys,  (ewi'en’) = YoDpkiky

Here DM denotes the variance of random function,

oo X
Dy = § A do
To evaluate the correlation functions of the third order one makes use of the fact that the integral
+m 7 ’
for = g F(0?, 0,0, 0'%) D do
kL — \ [ Bt St ) @2

is an isotropic tensor function of the second rank; consequently, it can be represented in the form [5]
fr = A (0°) 81 + B (0% 0,0/e*
One obtains

“+30

(Di(l) :
g T ~do = A%8,;8,, + B* (8;8,; + 85 + 8:18;,) 2.7

®?

Hence by convolution with respect to all subscripts an expression follows relating the quantities A*
and B* to the single-point correlation moment of the third order of the functionp',the latter being denoted
by

+o oo
§ fopdo = § F(o?, 00/, o) dode’ = 44% + 8B* = my (2.8)

—co

By employing now (2.3)-(2.5) together with (2.7) and (2.8), one obtains

+oo +o0 Fox !t
1) N . ®, W, m,
Werler's = b | “igtdo | P00 dor = (5 — 24%) bk

—oo —co

By using the obtained correlation moments one now finds the right-hand side of the inequality (1.11)
which in this case assumes the form

w¥ (g dey (puen<en) + _2<eli><p,eli’> + uXens’en’> 4 peni'en’> 2.9)

containing an unknown parameter ;. One minimizes the right-hand side of (2.9) with respect to the pa-
rameter and one finds
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p¥ Cepiddeyd e e — Yo Dy end Bu (2.10)

It follows from (2.10) that

- 1 Dy 2.1
B = W — 5 G DTy 2A 2.11)

is an upper bound for the shear modulus,

3. A lower bound for the shear modulus is found if the same method is employed to solve the system
(1.17) and (1.18), thus .

oo
0,0, .

Sif = S P'lu( o 5zi)€1mmxmdm, Ny =ay°/b° 3.1)

In the above p is a function of the variables w;, which determines the spectral expansion, namely

+o
v = S pem“x" do

Using the isotropy assumption for the random function v' one obtains
V84> =—1eDmu,  (Su'Su’> =DMy (3.2)
(81 Sy v'y = (md* — 24%) nyny
where Dj, is the variance and m,, the one-point correlation moment of the third order of the random func-
tion v', A;* is a constant,

By inserting (3.2) in (1.15) and using (2.2), and having minimized the right-hand side of (1.15) with
respect to the parameter n,j, one obtains

¥ <13 (1 < (S <9 <S> — = D (Sud Mt

Hence a lower bound is obtained of the shear modulus:
' - 4 by B (3.3
”()=[<V>_T<V>Dv+mv—2/11*] )
4, In the estimates (2.10) and (3.3) there appear the unknowns A* and A;* which are of dimensions
u® and 13 respectively; they represent the physical characteristics of the material. For a two-component
composition the relation between A* and A * is easily established by expressing v' in terms of u'. To this
end, a composition is considered whose shear moduli of the components are p; and u,. Suppose that the
concentration of the first component is ¢, Then the fluctuations of u and v are given by
=1 —0c) (b — pa), B’ = —c (2 — )
Vil = (1 —0) (n2 — pp) (laba)™, v’ = —c (B2 — ) (Reie)?

If one formally considers a two-component medium with fluctuations in its shear modulus,

% =01 —¢), %' = —c
then py', iy', v4' and v’ are expressed in terms of %' and ®,' as follows:
= (= ) %, P = () % (4.1)
vy == (i — () %y, vl = (e — pg) (Wape) ™ % ' 4.2)
By comparing (4.1) and (4.2) one finds that
e (T (4.3)
From (4.3) one obtains the relation
my = —my (ppe)™°
Thus (3.2) can be rewritten as .
(Su’v'Su'> = - (m:;l’ — 2A%) (Bae) ™ Nyitys N (4.4)
By comparing (4.4) and (3.2) one finds the sought relation
A = —A* (pypa)”° (4.5)

Employing (4.5), one can express the upper and lower bounds of the shear modulus in terms of the
concentrations and the shear moduli of the components; in the dimensionless form they become
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i (m—12{1 —c)c

M"':cn_i_(i*—c)——i—’.—cn{—(1—~c)+(n—i)(1~2c)——a {4.6)
oo = 21 ct+(l—cn—(n—1{-—~2) 4«
0o 2fe+t—gnlleFrnd—a—(n—D{I ~20)J-o] - (n — 12 (1 —c)e
(o = BPpZY, poo = PG, mo= pypt, 4.7)

Ca=24%3 012 [d— gL n>1)

It is noted that our problem was formulated for mixtures whose phase regions are of arbitrary cross
section. It can, therefore, be assumed that the quantity o which appears in the estimates (4.6) and (4.7)
reflects the effect of the composite material structure on its elastic properties.

The magnitude of o must be found experimentally; nevertheless, some a priori conclusions can be
made as regards its limits.

In Fig. 1, io(e) and pgo(e) axre shown for ¢=0,7 and n=5. The branches I and IT show yg and the
branches T and IV y;. The values—=< g =g and d = ¢ < = are, of course, excluded from our considerations
since otherwise u, exceeds <u>p,~! and uy, is less than <I.L~1>/J2—1 the latter being inconsistent with the the-
orems of Feucht and Reuss. We then exclude from our considerations a <a<b, c<a<d, since ps<p o for
these values of . Consequently, ¢ can only assume the values b =a=c, that is, the definition region of
@ is an interval between two points at which p;=py,. It is not difficult to show that these points always ex-
ist and that their coordinates are

=Y —1{1 —¢, o=~y —1c¢ 4.8)

The obtained solution is exact for structures with characteristics given by (4.8). Obviously, in a me-
dium with characteristics «,, the first element forms a matrix; but in a medium with characteristics oy
it is the other element. For media with characteristics b< o <cthe shear modulus is located inside the
dashed area. If particular features of the mixture structure are ignored and if the values « (b) and « (c)
are considered as the effective upper and lower bounds for the shear modulus, then they are identical with
the bounds obtained in [1]. It is also noticed that (4.6) yields a quantity below the upper bound for the ef-
fective shear modulus which can be obtained from [6] in the case of a lengthwise shear,

5. To find estimates for the bulk modulus of a statically isotropic elastic mixture one has to replace
the boundary conditions (1,8) and (1.14) by the following:
u; = (&yzi, p; = (o

and Egs. (1.13) and (1.17) by the Egs. (1.12) and (1.16). As regards the bulk modulus estimates, the consid-
eration of the general case of a stress—strain state does not present any difficulties if it is assumed that
the shear moduli of the components are the same, The analysis is similar to that given previously, the dif-
ference lying in that in evaluating the correlation moments of the third order it is now necessary to eval~
uate the integrals

=00
§ fudo = (34% 1 5B%5y 6.1)
Convolution in the subscripts k and I enables one to eliminate both constants
o0 -0
§ fpdo = {§ F(0?, 00/, 0 dado’ = 3(34% 4 5B%) = m,

where m,, is the third-order correlation moment of the random function v'. Consequently, the structure
characteristic o does not appear in the estimates for the bulk modulus, The upper and lower bounds of
v* are given, respectively, by

T =) — s
’ sy + <> Dy - m,
D2
T =<0 —4 >

3wy Dy 1 4 <8 Dy + 4y .
In the above §=v~1 D.y, D, are the variances of the functions y' and ¢, my is the third-order cor-

relation moment of the random function 8. It can easily be shown that both estimates are equal to one an~
other and also to the value of the bulk modulus obtained in [7, 8].
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| ‘( | Q ] Thus in estimating the elastic characteristics it has become clear .
a

bl — 4 N\ et

ey o sp— =1 that the bulk modulus of an isotropic mixture depends on the concentra-

Lo cll tions and on separate moduli; the particular features of the mixture struc-

a)

\ I . \I ture have no effect on it if the shear moduli are equal. This was estab-
\I ¥
7

! « lished by Hill in [8]. Moreover, it was also found that the shear modulus

t 7 of an elastic isotropic mixture contains a parameter characteristic for

Fig. 1 the structure of the mixture. This confirms Hill's assumption [8] that to

determine the shear modulus of a composite it is not only the concentration and the moduli of the compo-
nents but also the internal geometry which are of importance,

278

LITERATURE CITED

L. I, Walpole, "On bounds for the overall elastic moduli of inhomogeneous systems," J. Mech. Phys.
Solids, 14, 155-162 (1966).

L. 1. Sedov, Introduction to Mechanics of Continuous Media [in Russian], Fizmatgiz, Moscow (1962).
A. S. Monin and A. M, Yaglom, Statistical Hydromechanics. Mechanics of Turbulence [in Russian],
Pt. 2, Nauka, Moscow (1967).

V. V. Dudukalenko and V. A, Minaev, "Deformation of statically inhomogeneous plastic medium,"
Izv. Akad. Nauk SSSR, Mekhan, Tverd. Tela, No. 3 (1970).

V. A. Lomakin, Statistical Problems of the Mechanics of Solid Deforming Bodies [in Russian], Nauka,
Moscow (1970).

A, G. Fokin and T. D. Shermergor, "Elastic moduli of textured materials," Izv. Akad. Nauk SSSR,
Mekhan, Tverd. Tela, No. 1 (1987).

A, G, Fokin and T. D. Shermergor, "Computation of elastic moduli of heterogeneous media," Zh.
Prikl, Mekhan, i Tekh, Fiz., No. 3(1967).

R. Hill, "Elastic properties of reinforced solids; some theoretical principles,” J. Mech. Phys, Solids,
11, No. 5, 357-372 (1963).



